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* The widespread adoption of ML has exposed a new type
of security vulnerability

* ML can inherently facilitate and enhance the attack
o Black-box = difficult to identify and localize attacks
o Metric-driven development = security is not a priority
o Reliant on trusted components and 3rd parties

 Distributed learning paradigms are pushing models to
the Cloud and the Edge (on-device)




Attack Phase
* Training vs Inference/Testing

Attack Surface
» Training/testing inputs (data, targets)
» Model (architecture, parameters, weights)
» Model outputs (labels, predictions)
 Pipeline/infrastructure

Adversarial Goal
» Confidentiality = extract or leak information  “Privacy”

* Integrity = induce certain behavior } "Security”
 Availability = disrupt pipeline or model
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Security Defense
» Detect abnormal inputs during preprocessing
» Develop models which are certifiably robust against
adversarial inputs

Privacy Defense
- Differential Privacy (DP)
» Trusted Execution Environments (TEES)
« Homomorphic Encryption (HE)
 Federated Learning (FL)
* Privacy Preserving Federated Learning (PPFL)
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MLaaS
Data payload to APl endpoint

 (Centralized, online model
training




Privacy Preserving
Federated Learning
» Assumes IID data

* Local on-device training
 Homomorphic encryption
+ secure aggregation




Poisoning PPFL
» Adversary exploits privacy

protection as an integrity
vulnerability
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Attack Phase: Training
Attack Surface: Training data or model inputs
versarial Goal: Induce misclassification (security attack

95%
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Get a Model! Model Hijacking Attack Against Machine Learning Models

Ahmed Salem Michael Backes Yang Zhang
CISPA Helmholtz Center for Information Security

‘.’.’

* Poisoning + federated learning enables an adversary to “hijack”
a public model for their own secondary purpose.

 QOriginal model functions as intended but provides secret
functionality for the attacker.

* Model owner is unaware but assumes all legal responsibility and
associated costs of hosting the hijacked model.
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B The ShieldFL Game

g 1. Servers: S., S, = honest-but-curious and non-colluding
2. Key Centre: KC = fully trusted

3. Benign Users: {U}

4. Adversary: A = Malicious Users: {U*]

i : B Adversarial Goals
| 1. Maximise effect of poisonous weights
2. Corrupt the accuracy of the global model

¢ ShieldFL Defense Goals
| 1. Security: resist encrypted model poisoning
2. Privacy: guarantee confidentiality of data and secret key




Privacy-Preserving Defense Strategy (PPDS)
1. Normalization judgement
2. Secure cosine similarity
3. Byzantine-tolerance aggregation
4. Weight update using Two-Trapdoor HE

Two-Trapdoor HE
1. Generate public and secret keys = (pk, sk)
2. Encrypt plaintext under pk: m = [[ ¢ ]]
3. Split secret key into shares: sk > (sk;, sk;)
4. Partially decrypt ciphertext under sk;,sk;: [[c1l > [c]; [c],
5. Full decryption: ([c];, [c]) > m




RS [[ g 1] = full encryption under pk
s [ g 1, = partial encryption under sk,
&% g = full decryption

sk, sk,

S,: Sk forallusers

KC - (pk, sk)
Split(sk) - (sk,, sk,)
Split(sk) > (sk,,, sks)




RS [[ g 1] = full encryption under pk
s [ g 1, = partial encryption under sk,
&% g = full decryption




RS [[ g 1] = full encryption under pk
s [ g 1, = partial encryption under sk,
&% g = full decryption

[g];; = PartDec, (L[ g 1])

(Llglllgls))  ([lglllgls,) ([lglllgl,) ([lglllgl,)

11\

[g],, = PartDec, .(L[g]]); g = FullDec([g],. [g])

sku4
71 KRR = k. 3

el == el =




ShieldFL Results

» Secret key shares are computationally indistinguishable

» Leakage of any secret key share does not compromise sk

e sum,cos cannot leak information without knowing inputs and
intermediate computations

« The IND-CPA security of two-trapdoor HE + non-colluding
servers - computationally indistinguishable between output of
ideal world viewed by PPT A* and real world viewed by
adversary A

» Guarantees both security and privacy against encrypted
poisoning in PPFL
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Truth Serum: Poisoning Machine Learning Models
to Reveal Their Secrets

Florian Tramer* Reza Shokri Ayrton San Joaquin Hoang Le
ETH Ziirich National University of Yale-NUS College Oregon State University
Singapore

Matthew Jagielski Sanghyun Hong Nicholas Carlini
Google Oregon State University Google

* Poisoning <0.1% of training data can increase privacy
leakage and membership inference by 1-2 orders of
magnitude



Two-Trapdoor HE

Wl « KeyGen(e) — (pk, sk): Given the security parameter &,

distinct odd primes p, g are generated. where |p| = |g| =
e, N = pq. The public key pk = (N, (1 + N)) and secret
key sk = A =Ilcm(p —1,q — 1) are yielded.

e Encpi(x) — [[x]: Given a plaintext x € Zy, it is
encrypted with pk such that

IxXI=(0 4+ N Y mod N*, reZi. (1)

Bl - KeySplit(sk) — (ski, sko): The secret key sk = 7 is

randomly divided into two secret key shares sk and sk»
satisfying

2 2
z.ﬁ'ﬁ(,' =0 mod 4, Zyﬁ;; =1 mod N. (2)
i=1 i=1

« PartDecg. ([x]) — [x];: Given an encrypted data [x]]
and a secret key share sk;, it yields the corresponding
decryption share [x]; with sk; such that

[x]; = [xI*% mod N2. (3)

o FullDec([x]y,[x]2) — x: Given the tuple of decryption
shares ([x];, [x]2). the plaintext x is decrypted as
([T~ [x]l; mod N?)— 1

X = mod N. (4)
N

To decrypt an encrypted number, both the PartDec and
FullDec algorithms must be used.




Federated Learning
» Decentralized and

distributed model training
« Assumes |ID data
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