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MOTIVATION01
• Foundation models are emerging paradigm in AI/ML

• FMs = sequence models

• SOTA: transformer architecture & attention mechanism

• High expressive power but computationally inefficient

• Efficiency vs effectiveness tradeoff



MOTIVATION01
RNNs = efficient

 Compressed (finite) state

 Fast O(1) inference

 O(N) training

 “Forget” context 

 Limited context window



MOTIVATION01
Transformers = effective

 SOTA expressive power

 O(N) inference

 Parallelizable

 O(N2) training

 Limited context window



SSMs02
State Space Models (S2) 

• Generalizes the idea of recurrent process + latent state

  → Kalman Filters, MDPs, DCMs, HMMs, RNNs, CNNs

Structured State Space Sequence Models (S4)
• Linear parameterization of S2 state equations →  N-dim projection



SSMs02

• Discretization step: (Δ ,A,B,C)→(A ,B,C) 

• Dual forms: 

• “Recurrent” (discrete sequence) → efficient inference

• “Convolutional” (continuous fxn) → parallelizable training

• “Unrolling” relies on Linear Time Invariance (LTI)

• Efficiently solve N-D latent space



SSMs02

Hungry Hungry Hippos
(HazyResearch, 2023)

Striped Hyena
(Together Research, 2023)

RWKV Eagle
(BlinkDL, 2023)

• S4 is a transformation that can be integrated into neural 
network architectures as SSM blocks/layers



MAMBA03
Goal: Expressive power of attention with near linear S4 efficiency

Selection Mechanism 

• Allow SSM to focus on or filter out inputs

• Reparametrize Δ ,A,B,C to be linear functions of the input

• L dim → Time varying → can’t use efficient convolutional form



MAMBA03
Hardware Aware State Expansion

• Minimize memory IOs to maximize computation speed

• Materialize the state h in most efficient levels of GPU memory



MAMBA03
Structured State Space Sequence Models + Selective Scan (S6)

• Fast + Deadly + SSSSSS = Mamba 



MAMBA03
• Scaling laws outperform Transformer++ up to 1B parameters
• Chinchilla protocol: 20 training tokens/parameter



MAMBA03
• “Unlimited” batch size since no KV cache



MAMBA03



MAMBA03



MAMBA03
No Free Lunch

• “Linear” = O(BLND)

• Scaling: unknown empirical performance and engineering 

constraints beyond 2.8B parameters

• Downstream affordances: unknown fine-tuning, adaptation, 

prompting, in-context learning, instruction tuning, RLHF, 

quantization capability 

• Continuous-Discrete spectrum: SSMs have a strong inductive 

bias toward continuous-time data modalities



MoE-MAMBA04
Mamba + Mixture of Experts

• Alternate each Mamba block with a MoE Switch block



MoE-MAMBA04
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